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Introduction and Motivations

Supersymmetry

Supersymmetry is a fundamental ingredient of many construction in theoretical
physics and string theory and it has already led to many fruitful interactions with
mathematics.

I String theory strongly relies on the existence of extra-dimensions. The
requirement that a vacuum is supersymmetric selects particular type of
internal geometries (Calabi-Yau, Generalized Geometries, ...) which have
been objects of intense investigation in the last thirty years.

I More recent interest in an even simpler question: when can we define a
supersymmetric quantum field theory on a nontrivial manifold M ? Familiar
examples: Rp,q, AdSd , Rp,q × T s ,... More general analysis just started ...

Festuccia, Seiberg
Santleben, Tsimpis
Klare, Tomasiello, A. Z.
Dumitrescu, Festuccia, Seiberg
Cassani, Klare, Martelli, Tomasiello, A. Z.
Liu, Pando Zayas, Reichmann; de Medeiros
Dumitrescu, Festuccia; Kehagias-Russo [...]
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Introduction and Motivations

Why should we be interested in susy in curved space?

I Mathematically: 20 years ago Witten showed on to put an N = 2
supersymmetric theory on any Euclidean manifold M. The result is a
topological theory (links to Donaldson invariants of M ,....)

I Physically: more recently we learned how to compute the full quantum
partition function of Euclidean supersymmetric theories on spheres and other
manifolds, reducing it to a matrix model.

∫ N1∏
i=1

dui

N2∏
j=1

dvj

∏
i<j sinh2 ui−uj

2 sinh2 vi−vj
2∏

i<j cosh2 ui−vj
2

e
ik

4π (
∑

u2
i −
∑

v2
j )

ABJM, 3d Chern-Simon theories, [Kapustin,Willet,Yakoov;Drukker,Marino,Putrov]
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Introduction and Motivations

Why should we be interested in susy in curved space?

I Mathematically: 20 years ago Witten showed how to put an N = 2
supersymmetric theory on any Euclidean manifold M. The result is a
topological theory which computes Donaldson invariants of M

I Physically: more recently we learned how to compute the full quantum
partition function of Euclidean supersymmetric theories on spheres and other
manifolds, reducing it to a matrix model.

I Holographically: we recently found new examples of regular asymptotically
AdS backgrounds dual to CFTs on curved space-times [Martelli,Passias,Sparks,....]

ds2
d+1 =

dr2

r2
+ (r2ds2

Md
+ O(r))
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Supersymmetry on Curved Backgrounds

Supersymmetric theories

Supersymmetric theories are usually formulated on Minkowski space-time R3,1. At
the classical level, we have an action for bosonic and fermionic fields

SSUSY(φ(x), ψ(x),Aµ(x), ....)

invariant under transformations that send bosons into fermions and viceversa

δφ(x) = εψ(x) , δψ = ∂µφγ
µε+ · · ·

where ε is a constant spinor.

The symmetry group of the theory contains translations, Lorentz transformations
SO(3, 1) and the fermonic symmetries with the corresponding fermionic Noether
charges Q. The theory can be also formulated on Euclidean space R4.

Can we define the theory on a general manifold M preserving supersymmetry?

Alberto Zaffaroni (Milano-Bicocca) Supersymmetry on Curved Spaces 17/12, Round Table, Dubna 6 / 39



Supersymmetry on Curved Backgrounds

Supersymmetric theories on curved spaces

The general strategy is to promote the metric to a dynamical field [Festuccia,Seiberg] .

This is done by coupling the rigid theory to the multiplet of supergravity
(gµν , ψµ, ...)

SSUGRA(φ(x), ψ(x), gµν(x), ψµ(x), ...)

which is invariant under local transformations

δφ(x) = ε(x)ψ(x) , δeaµ(x) = ε̄(x)γaψµ(x) + · · ·

We are gauging the original symmetries of the theory. At linear level this is just
the Noether coupling

−1

2
gmnT

mn + ψ̄mJ m

Alberto Zaffaroni (Milano-Bicocca) Supersymmetry on Curved Spaces 17/12, Round Table, Dubna 7 / 39



Supersymmetry on Curved Backgrounds

Supersymmetric theories on curved spaces

The rigid theory is obtained by freezing the fields of the metric multiplet to
background values

gµν = gM
µν , ψµ = 0

The resulting theory will be supersymmetric if the variation of supersymmetry
vanish

δeaµ(x) = ε̄(x)γaψµ(x) + · · · ≡ 0

δψµ(x) = ∇µε+ · · · ≡ 0

The graviton variation gives a differential equation for ε(x) which need to be
solved in order to have supersymmetry and gives constraints on M.
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Supersymmetry on Curved Backgrounds

Superconformal theories

It is very interesting physically and mathematically to consider theories that are
also invariant under dilatations

x → λx

The group of symmetries of a CFT is enlarged to

I translations + Lorentz SO(3, 1)→ conformal group SO(4, 2)

I supersymmetry Q is doubled: (Q,S)

I extra bosonic global symmetries rotating (Q,S) (R-symmetries)

for N = 1 supersymmetry the R-symmetry is U(1) : Q → e iαQ.

The possible conformal superalgebras have been classified by Nahm in the

seventies. It is SU(2, 2|1) for N = 1 supersymmetry.
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Supersymmetry on Curved Backgrounds

Superconformal theories on curved spaces

The strategy here is to couple the CFT to conformal supergravity. The
N = 1 conformal supergravity multiplet (gµν , ψµ,Aµ) contains gauge fields
for the superconformal symmetries

−1

2
gmnT

mn + AmJ
m + ψ̄mJm

We freeze (gµν ,Aµ) to background values and set ψµ = 0. In order to
preserve some supersymmetry, the gravitino variation must vanish.

(∇a − iAa)ε+ + γaε− = 0

ε± parameters for the supersymmetries and the superconformal
transformations.
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Supersymmetry on Curved Backgrounds

Superconformal theories on curved spaces

The variation of the gravitino can be written as

(∇a − iAa)ε+ + γaε− = 0 =⇒ ∇A
a ε+ =

1

d
γa�∇Aε+

I ε+ is a charged (or twisted or spinc) spinor, a section of Σ+ ⊗ L
I ∇A

a = ∇a − iAa is a connection on L
I �∇A ≡ γa(∇a − iAa) is the twisted Dirac operator

Alberto Zaffaroni (Milano-Bicocca) Supersymmetry on Curved Spaces 17/12, Round Table, Dubna 11 / 39



Supersymmetry on Curved Backgrounds

Superconformal theories on curved spaces

The condition for preserving some supersymmetry is then

∇A
a ε+ =

1

d
γa�∇Aε+

I (twisted) conformal Killing equation

I projection of ∇A
a ε on the irreducible spin 3/2 component

I conformally invariant equation
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Supersymmetry on Curved Backgrounds

Twistors

Conformal Killing Spinors

∇aε =
1

4
γa�∇ε

with A = 0 (also called twistors) have been studied and classified:

I Lorentzian: pp-waves and Fefferman metrics.

I Euclidean: conformally equivalent to manifolds with Killing spinors
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Supersymmetry on Curved Backgrounds

SCFTs on Euclidean Curved Backgrounds

Conformal Killing Spinors with A = 0 are classified: they become Killing Spinors
on a Weyl rescaled metric:

∇aε =
1

d
γa�∇ε =⇒ ∇aε = µγaε

Manifolds with Killing Spinors are in turn classified: in the compact case the
cone over it has restricted holonomy:

dim H C (H)

3 S3 R4

4 S4 R5

5 Sasaki-Einstein CY3

6 Nearly-kähler G2 manifolds

or quotients...

Alberto Zaffaroni (Milano-Bicocca) Supersymmetry on Curved Spaces 17/12, Round Table, Dubna 14 / 39



Supersymmetry on Curved Backgrounds

SCFTs on Euclidean Curved Backgrounds

Information on spinors ε can be encoded in differential forms (bilinears)

Σp ⊗ Σp = ⊕ΛkTMp

(ε⊗ ε†)αβ =
∑

γ i1···ikαβ Ci1···ik , =⇒ Ci1···ik = ε†γ i1···ik ε
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Supersymmetry on Curved Backgrounds

SCFTs on Euclidean Curved Backgrounds

In Euclidean signature from a CKS ε+ we can construct two two forms j , ω:

ε+ ⊗ ε†+ =
1

4
eBe−i j , ε+ ⊗ ε+ =

1

4
eBω , eB ≡ ||ε+||2

j = e1 ∧ e2 + e3 ∧ e4 , ω = (e1 + ie2) ∧ (e3 + ie4)

The CKS equation translates into a set of linear constraints for the differential of
the bilinears and the gauge field

∇A
a ε+ =

1

d
γa�∇Aε+ =⇒ linear eqs for {dj , dω,A}
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Supersymmetry on Curved Backgrounds

SCFTs on Euclidean Curved Backgrounds

The existence of a CKS is (locally) equivalent to the existence of a complex
structure.

CKS =⇒
w3 = 0 (complexmanifold)

A1,0 = −i(−1

2
w5

0,1 +
1

4
w4

1,0 +
1

2
∂B)

A0,1 = −i(+
1

2
w5

0,1 −
3

4
w4

0,1 +
1

2
∂̄B)

I dj = w4 ∧ j , dω = w5 ∧ ω + w3 ∧ ω̄
I Notice that A is in general complex

[klare,tomasiello,A.Z.;dumitruescu,festuccia,seiberg]
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Supersymmetry on Curved Backgrounds

Examples: Kähler manifolds

Kähler manifolds are complex and support supersymmetry.

Equivalent characterizations:

I Existence of two-forms with

dj = 0 , dω = 2iA ∧ ω

I existence of a covariantly constant charged spinor

(∇m − iAm) ε+ = 0

A in this case is real.
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Supersymmetry on Curved Backgrounds

Examples: non Kähler manifolds

The simplest example of a non-Kähler but complex manifold is probably
S3 × S1.

I it solves the CKS conditions with a complex gauge field: A = idφ

I partition functions on S3 × S1 define superconformal indices!

Alberto Zaffaroni (Milano-Bicocca) Supersymmetry on Curved Spaces 17/12, Round Table, Dubna 19 / 39



Supersymmetry on Curved Backgrounds

Examples: S4 revised

Every Killing spinor ∇aε = γaε is also Conformal Killing with A = 0.
However S4 is not complex!

Solution: j and ω are well defined everywhere only if ε+ never vanishes.
The manifold is complex outside zeros of ε+.

Decomposing
ε = ε+ + ε−

ε± vanish at North and South pole respectively: R4 = S4−NP is complex.
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Supersymmetry on Curved Backgrounds

SCFTs on Lorentzian Curved Backgrounds

In Lorentzian signature from a CKS ε+ we can construct a real null vector z and
a complex two form ω:

ε+ ⊗ ε+ = z + i ∗ z , ε+ ⊗ ε− ≡ ω = z ∧ w , z2 = 0

z = e0 − e1 , w = e2 + ie3

The CKS equation translates into a set of linear constraints for the differential of
the bilinears and the gauge field

∇A
a ε+ =

1

d
γa�∇Aε+ =⇒ linear eqs for {dz , dω,A}
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Supersymmetry on Curved Backgrounds

SCFTs on Lorentzian Curved Backgrounds

The existence of a charged CKS is equivalent to the existence of a null
CKV.

∇A
a ε+ =

1

4
γa�∇Aε+ =⇒ ∇µzν +∇νzµ = λgµν (8 conditions )

(12 conditions) real gauge field A (4 conditions)

Whenever there exists a null CKV a SCFT preserves some supersymmetry
in curved space. [cassani,klare,martelli, tomasiello,A.Z.]
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Supersymmetry on Curved Backgrounds

SCFTs on Lorentzian Curved Backgrounds

Every conformal Killing vector becomes Killing in a Weyl rescaled metric

Lzgµν = λgµν ⇒ Lz(e2f gµν) = (λ+ 2z · df )gµν

We can then choose adapted coordinates z = ∂/∂y

ds2 = 2H−1(du + βmdx
m)(dy + ρmdx

m + F (du + βmdx
m)) + Hhmndx

mdxn

where H, hmn, βm, ρm do not depend on y. A is completely determined by these
functions.
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Supersymmetry on Curved Backgrounds

Summary: the result for A 6= 0
Focus on a single solution of the CKS eqs in 4d: ∇A

a ε+ = 1
d γa�∇

Aε+

4d forms constraints on geometry

M4 has a null conformal Killing vector z

Lorentzian z , ω , z2 = 0 ∇µzν +∇νzµ = λgµν
[cassani,klare,martelli, tomasiello,A.Z.]

M4 is complex (locally)

Euclidean j , ω dω = W ∧ ω
[klare,tomasiello,A.Z.;dumitruescu,festuccia,seiberg]
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Supersymmetry on Curved Backgrounds

Supersymmetry on Curved spaces

More generally, we may ask when we can put a generic supersymmetric
theory on a curved background: coupled it the Poincaré supergravity and
set the gravitino variation to zero. [festuccia,seiberg]

A theory with an R-symmetry can be coupled to new minimal supergravity
which has two auxiliary fields (aµ, vµ) with d(∗v) = 0. The gravitino
variation is:

∇mε+ = −i
(

1

2
vnγnm + (v − a)m

)
ε+

Alberto Zaffaroni (Milano-Bicocca) Supersymmetry on Curved Spaces 17/12, Round Table, Dubna 25 / 39



Supersymmetry on Curved Backgrounds

Reconstructing the Lagrangian

By freezing the supergravity fields gµνaµ, vµ to their background value we
reconstruct the Lagrangian for the Field Theory

−1

2
gmnT

mn +

(
am −

3

2
vm

)
Jm + ψ̄mJ m − 1

2
vmtm + O(v2, a2)

and the field transformations (for an euclidean chiral multiplet F = (φ, ψ±,F )):

δφ = −ε+ψ+ , δφ̄ = 0

δψ+ = F ε+ , δψ− = −∇a
mφ̄γ

mε+

δF = 0 δF̄ = ε+γ
m

(
∇a

m +
i

2
vm

)
ψ−

[festuccia,seiberg]

Alberto Zaffaroni (Milano-Bicocca) Supersymmetry on Curved Spaces 17/12, Round Table, Dubna 26 / 39



Supersymmetry on Curved Backgrounds

Supersymmetry on Curved spaces

Conformal Killing spinors are closely related to solutions of the new minimal
condition. Defining �∇Aε+ ≡ 2i�vε+ we can map a CKS to (and viceversa)

∇A
a ε+ −

1

4
γa�∇Aε+ = 0 =⇒ ∇mε+ = −i

(
1

2
vnγnm + (v − a)m

)
ε+

Condition for coupling a supersymmetric theory to new minimal supergravity
(gµν , aµ, vµ) same as the condition for existence of a CKS with a ≡ A + 3

2v

I One Euclidean supercharge ε+: M4 should be a complex manifold

[klare,tomasiello,A.Z.;dumitruescu,festuccia,seiberg]

I One Lorentzian supercharge: M4 should have a null Killing Vector z
[cassani,klare,martelli, tomasiello,A.Z.]

Poincaré supergravity and its auxiliary fields arise from the gauge fixing of the
superconformal algebra using compensators.
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Conclusions

Open Problems and Conclusions

I Physics-wise: exact results for quantum path integrals in curved space

I What are the conditions in other dimensions and other super
symmetries? interesting for (2,0),...

I Interesting connection to holography and the AdS/CFT
correspondence
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Appendix

An example: 3d susy on spheres

The path integral localizes on very simple configurations with Aµ = 0 and a

constant σ and can be reduced to a matrix model

[Kapustin,Willet,Yakoov]

δAµ = −
i

2
λ
†
γµε

δσ = −
1

2
λ
†
ε ∇µε =

i

2
γµε

δλ =

(
−

1

2
γ
µνFµν − D + iγµ∂µσ −

1

R
σ

)
ε

For ABJM, for example:

∫ N1∏
i=1

dui

N2∏
j=1

dvj

∏
i<j sinh2 ui−uj

2 sinh2 vi−vj
2∏

i<j cosh2 ui−vj
2

e
ik
4π (

∑
u2
i −

∑
v2
j )

I the partition function scales as ∼ N3/2 for N � k [Drukker,Marino, Putrov]

Alberto Zaffaroni (Milano-Bicocca) Supersymmetry on Curved Spaces 17/12, Round Table, Dubna 29 / 39



Appendix

When we can have susy in 3d curved space?

We can also consider the dimensionally reduced new minimal equation:

∇mχ = −i (vnσnm + (v − a)m)χ+
v4

2
σmχ , m, n = 1, 2, 3

I The condition of supersymmetry can be given in terms of a set of vierbein
e3, o = e1 + ie2 by:

de3 = −(dB + 2 Ima) ∧ e3 + 4 ∗ Rev + i Imv4 o ∧ ō

do = (2 v4e3 + 2i a− dB) ∧ o

dB = 2 Im(v − a) + i Revx(o ∧ ō) + Rev4e3

I Many examples on spheres, round and squashed.
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Appendix

Digression: 3d susy on spheres

The partition function is supposed to decrease along a RG flow, thus
playing the role of a c function in 3D.

I a-theorem recently proved in 4d
[Komargodski-Schwimmer]

I general arguments for all dimensions for theories with holographic
duals

[Girardello,Petrini,Porrati,A.Z.; Gubser,Freedman,Pilch,Warner; Myers]

I link to entanglement entropy
[Casini,Huerta,Myers]
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Appendix

Digression: 3d susy on spheres
The partition function can be refined as a function of the conformal dimensions of

the fields F (∆i ). ∆i parametrizes the different ways of coupling the theory to

curved space on S3.

δφ = 0 , δφ
† = ψ

†
ε

δψ = (−i�Dφ− iσφ +
∆

r
φ)ε , δψ

† = ε
T F†

δF = ε
T (−i�Dψ + iσψ +

1

r
(

1

2
− ∆)ψ + iλφ) δF† = 0

R symmetry ambiguity due to conserved global symmetry:

JR = J
(0)
R +

∑
i

qiJ
i , ∆ = R

Turn on a background value for the scalar partner of J i : σi = mi + i∆i

F (∆i ) is maximized at the exact R-symmetry

[Jafferis; Hama,Hosomici,Lee]
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Holographic Perspective

CFTs on Curved spaces

General vacua of a bulk effective action

L = −1

2
R+ FµνF

µν + V ...

with a metric

ds2
d+1 =

dr2

r2
+ (r2ds2

Md
+ O(r)) A = AMd

+ O(1/r)

and a gauge fields profile, correspond to CFTs on a d-manifold Md and a
non trivial background field for the R-symmetry

LCFT + JµAµ
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Holographic Perspective

SCFTs on Curved spaces

Requiring that some supersymmetry is preserved: [...,klare,tomasiello,A.Z.](
∇A

M +
1

2
γM +

i

2
�FγM

)
ε = 0 ∇A

M ≡ ∇M − iAM

Near the boundary:

ε = r
1
2 ε+ + r−

1
2 ε−

(∇a − iAa)ε+ + γaε− = 0 =⇒ ∇A
a ε+ =

1

d
γa�∇Aε+

Existence of a Conformal Killing Spinor.
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Back to Holography

Back to Holography

The dual of a supersymmetric CFT on M4 is an asymptotically AdS5 bulk
space

ds2
5 =

dr2

r2
+ (r2ds2

M4
+ O(r))

solving the supersymmetric conditions(
∇A

M +
1

2
γM +

i

2
�FγM

)
ε = 0

of minimal gauged supergravity in 5d.
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Back to Holography

Holographic perspective

In the lorentzian case supersymmetric bulk solutions are classified. [gauntlett,guowski]

Supersymmetry requires a Killing vector V in the bulk, null or time-like

I For V time-like,

the metric must be a time-like fibration over a Kähler manifold.

I For V null,

the metric is of the form ds2 = H−1(dudy + Fdu2) + H2hmndx
mdxn

Alberto Zaffaroni (Milano-Bicocca) Supersymmetry on Curved Spaces 17/12, Round Table, Dubna 36 / 39



Back to Holography

An Example

For V time-like, supersymmetry requires the metric to be a time-like fibration
over a Kähler manifold.

Take just AdS in global coordinates and send φ→ φ̃− 2t (σ̃3 = σ3 − 2dt)

−(1+r2)dt2+
dr2

r2 + 1
+
r2

4
(

3∑
i=1

σ2
i ) = −(dt+

r2

2
σ̃3)2+

dr2

r2 + 1
+
r2

4
(σ2

1+σ2
2+(r2+1)σ̃2

3)

V = dt + r2σ̃3 = r2z + · · ·
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Back to Holography

Holographic perspective

The null or time-like Killing vector V in the bulk reduces to a null conformal
killing vector on the boundary

V = r2z + ...

One can show that

I the condition of supersymmetry in the bulk reduces asymptotically to those
we have found on the boundary and nothing more

I given a boundary metric M4 with a null conformal Killing vector, a bulk
solution that can be determined order by order in 1/r

I open problem: when the bulk metric is regular?
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Back to Holography

Some examples

There are few explicit supersymmetric examples in five and four
dimensions:

I SCFTs on spheres: standard AdSd

I SCFTs on 3d squashed spheres: evaluating N 3/2 free energies
[Martelli,Passias,Sparks]

I Some Lorentzian examples [Gauntlett-Gutowski-Suryanarayana]
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